Una visión diferente para disfrutar de la magia del Universo
Astronomía - Cosmología - Astrofotografía - Astrofísica - Exploración Espacial

Si eres astrónomo puedes solicitar colaborar aportando tus imágenes a Universo Mágico, utiliza nuestro Formulario de Contacto.





Johannes Kepler




Johannes Kepler (Weil der Stadt, 27 de diciembre de 1571 - Ratisbona, 15 de noviembre de 1630), figura clave en la revolución científica, fue un astrónomo y matemático alemán; conocido fundamentalmente por sus leyes sobre el movimiento de los planetas en su órbita alrededor del Sol. Fue colaborador de Tycho Brahe, a quien sustituyó como matemático imperial de Rodolfo II. Kepler se crió en el seno de una familia protestante luterana que vivía en la ciudad de Weil der Stadt en Baden, Wurtemberg, Alemania. Su abuelo había sido alcalde de su ciudad natal, pero cuando nació Johannes, la familia se encontraba en decadencia. Su padre, Heinrich Kepler, era mercenario en el ejército del duque de Wurtemberg y, siempre en campaña, raramente estaba presente en su domicilio. Su madre, Katherina Guldenmann llevaba una casa de huéspedes, era curandera y herborista, y más tarde fue acusada de brujería.





Kepler, nacido prematuramente a los siete meses de embarazo, era hipocondríaco de naturaleza endeble y sufrió toda su vida una salud frágil. A la edad de tres años, contrajo viruela, lo que, entre otras secuelas, debilitaría severamente su vista. A pesar de su salud, fue un niño brillante al que le gustaba impresionar a los viajeros en la hospedería de su madre con sus fenomenales facultades matemáticas. Heinrich Kepler tuvo además otros tres hijos: Margarette, de la que Kepler se sentía muy próximo, Christopher, que le fue siempre antipático, y Heinrich. De 1574 a 1576, vivió con Heinrich, quien era epiléptico, en casa de sus abuelos mientras que su padre estaba en una campaña y su madre había ido en su búsqueda. Al regresar sus padres, Kepler se trasladó a Leonberg y entró en la escuela latina en 1577. Sus padres le despertaron el interés por la astronomía.

Con cinco años, observó el cometa de 1577, comentando que su madre lo llevó a un lugar alto para verlo. Su padre le mostró a la edad de nueve años el eclipse de Luna del 31 de enero de 1580, recordando que la Luna aparecía bastante roja. Kepler estudió más tarde el fenómeno y lo explicó en una de sus obras de óptica. Su padre partió de nuevo para la guerra en 1589, desapareciendo para siempre. Kepler terminó su primer ciclo de tres años en 1583 con retraso, debido a su empleo como jornalero agrícola, entre nueve y once años. En 1584, entró en el Seminario protestante de Adelberg y dos años más tarde, en el Seminario superior de Maulbronn. Obtuvo allí el diploma de fin de estudios y se matriculó en 1589 en la universidad de Tubinga. Comenzó primero a estudiar ética, dialéctica, retórica, griego, hebreo, astronomía y física, y más tarde teología y ciencias humanas.

Continuó con sus estudios después de obtener la maestría en 1591. Su profesor de matemáticas, el astrónomo Michael Maestlin, le enseñó el sistema heliocéntrico de Copérnico que se reservaba a los mejores estudiantes. Los otros estudiantes tomaban como cierto el sistema geocéntrico de Ptolomeo, que afirmaba que la Tierra estaba inmóvil y ocupaba el centro del Universo, y que el Sol, la Luna, los planetas y las estrellas giraban a su alrededor. Kepler se hizo así un copernicano convencido y mantuvo una relación muy estrecha con Maestlin; no vaciló en pedirle ayuda o consejo para sus trabajos. Mientras Kepler planeaba hacerse pastor luterano, la escuela protestante de Graz buscaba a un profesor de matemáticas. Abandonó entonces los estudios de Teología para tomar el puesto y dejó Tubinga en 1594.

Después de estudiar teología en la universidad de Tubinga, incluyendo astronomía con Michael Maestlin, seguidor de Copérnico, enseñó en el seminario protestante de Graz. Kepler intentó comprender las leyes del movimiento planetario durante la mayor parte de su vida. En un principio Kepler consideró que el movimiento de los planetas debía cumplir las leyes pitagóricas de la armonía. Esta teoría es conocida como la música o la armonía de las esferas celestes. En su visión cosmológica no era casualidad que el número de planetas conocidos en su época fuera uno más que el número de poliedros perfectos. Siendo un firme partidario del modelo copernicano, intentó demostrar que las distancias de los planetas al Sol venían dadas por esferas en el interior de poliedros perfectos, anidadas sucesivamente unas en el interior de otras. En la esfera interior estaba Mercurio mientras que los otros cinco planetas, Venus, Tierra, MarteJúpiter y Saturno, estarían situados en el interior de los cinco sólidos platónicos correspondientes también a los cinco elementos clásicos.

En 1596 Kepler escribió un libro en el que exponía sus ideas.  Mysterium Cosmographicum, El misterio cósmico. Siendo un hombre de gran vocación religiosa, Kepler veía en su modelo cosmológico una celebración de la existencia, sabiduría y elegancia de Dios. Escribió: "Yo deseaba ser teólogo; pero ahora me doy cuenta gracias a mi esfuerzo de que Dios puede ser celebrado también por la astronomía". En 1600 acepta la propuesta de colaboración del astrónomo imperial Tycho Brahe, que a la sazón había montado el mejor centro de observación astronómica de esa época. Tycho Brahe disponía de los que entonces eran los mejores datos de observaciones planetarias pero la relación entre ambos fue compleja y marcada por la desconfianza. Hasta 1602, a la muerte de Tycho, Kepler no consiguió tener acceso a todos los datos recopilados por Tycho, mucho más precisos que los manejados por Copérnico.

A la vista de los datos, especialmente los relativos al movimiento retrógrado de Marte se dio cuenta de que el movimiento de los planetas no podía ser explicado por su modelo de poliedros perfectos y armonía de esferas. Kepler, hombre profundamente religioso, incapaz de aceptar que Dios no hubiera dispuesto que los planetas describieran figuras geométricas simples, se dedicó con tesón ilimitado a probar con toda suerte de combinaciones de círculos. Cuando se convenció de la imposibilidad de lograrlo con círculos, usó óvalos. Al fracasar también con ellos, "Sólo me quedó una carreta de estiércol" y empleó elipses. Con ellas desentrañó sus famosas tres leyes, publicadas en 1609 en su obra  Astronomia Nova , que describen el movimiento de los planetas. Leyes que asombraron al mundo, le revelaron como el mejor astrónomo de su época, aunque él no dejó de vivir como un cierto fracaso de su primigenia intuición de simplicidad. "¿por qué elipses, habiendo círculos?".

 Inicialmente, Kepler intentó la circunferencia por ser la más perfecta de las trayectorias, pero los datos observados impedían un ajuste correcto, lo que entristeció a Kepler, ya que no podía saltarse un pertinaz error de ocho minutos de arco. Kepler comprendió que debía abandonar la circunferencia, lo que implicaba abandonar la idea de un mundo perfecto. De profundas creencias religiosas, le costó llegar a la conclusión de que la Tierra era un planeta imperfecto, asolado por las guerras. En esa misma misiva incluyó la cita clave: "Si los planetas son lugares imperfectos, ¿por qué no han de serlo las órbitas de los mismos?". Finalmente utilizó la fórmula de la elipse, una rara figura descrita por Apolonio de Pérgamo en una de las obras salvadas de la destrucción de la biblioteca de Alejandría. Descubrió que encajaba perfectamente en las mediciones de Tycho. Había descubierto su primera ley, la primera ley de Kepler.





"Los cuerpos celestes tienen movimientos elípticos alrededor del Sol, estando éste situado en uno de los 2 focos que contiene la elipse". Después de ese importante salto, en donde por primera vez los hechos se anteponían a los deseos y los prejuicios sobre la naturaleza del mundo. Kepler se dedicó simplemente a observar los datos y sacar conclusiones ya sin ninguna idea preconcebida. Pasó a comprobar la velocidad del planeta a través de las órbitas llegando a la segunda ley: "Las áreas barridas por los radios de los cuerpos celestes son proporcionales al tiempo usado por aquellos en recorrer el perímetro de esas áreas". Durante mucho tiempo, Kepler sólo pudo confirmar estas dos leyes en el resto de planetas. Aun así fue un logro espectacular, pero faltaba relacionar las trayectorias de los planetas entre sí. Tras varios años, descubrió la tercera e importantísima ley del movimiento planetario: "El cuadrado de los períodos de la órbita de los cuerpos celestes guarda proporción con el cubo de la distancia que hay respecto al Sol".

Esta ley, llamada también ley armónica, junto con las otras leyes, permitía ya unificar, predecir y comprender todos los movimientos de los astros. Sin embargo, tres siglos después, su intuición se vio confirmada cuando Einstein mostró en su Teoría de la Relatividad general que en la geometría tetradimensional del espacio-tiempo los cuerpos celestes siguen líneas rectas. Y es que aún había una figura más simple que el círculo: la recta. En 1627 publicó las Tabulae Rudolphine, a las que dedicó un enorme esfuerzo, y que durante más de un siglo se usaron en todo el mundo para calcular las posiciones de los planetas y las estrellas. Utilizando las leyes del movimiento planetario fue capaz de predecir satisfactoriamente el tránsito de Venus del año 1631 con lo que su teoría quedó confirmada. Escribió un biógrafo de la época con admiración, lo grande y magnífica que fue la obra de Kepler, pero al final se lamentaba de que un hombre de su sabiduría, en la última etapa de su vida, tuviese demencia senil, llegando incluso a afirmar que "Las mareas venían motivadas por una atracción que la luna ejercía sobre los mares...", un hecho que fue demostrado años después de su muerte.

En Graz, publicó almanaques con predicciones astrológicas, que él escribía, aunque negaba algunos de sus preceptos. En la época, la distinción entre ciencia y creencia no estaba establecida todavía claramente, y el movimiento de los astros, todavía bastante desconocido, se consideraba gobernado por leyes divinas. Kepler estuvo casado dos veces. Contrajo el primer matrimonio, de conveniencia, el 27 de abril de 1597 con Barbara Müller. En el año 1600, fue obligado a abandonar Austria cuando el archiduque Fernando promulgó un edicto contra los protestantes. En octubre de ese mismo año se trasladó a Praga, donde fue invitado por Tycho Brahe, que había leído algunos trabajos de Kepler. Al año siguiente, Tycho Brahe falleció y Kepler lo sustituyó en el cargo de matemático imperial de Rodolfo II y trabajó frecuentemente como consejero astrológico.

El 17 de octubre de 1604 Kepler observó una supernova, SN 1604, en la Vía Láctea, nuestra propia Galaxia, a la que más tarde se le llamaría la estrella de Kepler. La estrella había sido observada por otros astrónomos europeos el día 9 como Brunowski en Praga, quién escribió a Kepler, Altobelli en Verona y Clavius en Roma y Capra y Marius en Padua. Kepler inspirado por el trabajo de Tycho Brahe realizó un estudio detallado de su aparición. Su obra  De Stella nova in pede Serpentarii,  La nueva estrella en el pie de Ophiuchus, proporcionaba evidencias de que el Universo no era estático y sí sometido a importantes cambios. La estrella pudo ser observada a simple vista durante 18 meses después de su aparición. La supernova se encuentra a tan solo 13.000 años luz de nosotros. Ninguna supernova posterior ha sido observada en tiempos históricos dentro de nuestra propia galaxia. Dada la evolución del brillo de la estrella hoy en día se sospecha que se trata de una supernova de tipo I.

En 1612 murió su esposa Barbara Müller, al igual que dos de los cinco niños, de edades de apenas uno y dos meses, que habían tenido juntos. Este matrimonio de conveniencia, organizado por sus allegados, lo unió a una mujer grasa y simple de espíritu, con carácter execrable. Otro de los hijos murió a la edad de siete años. Solo su hija Susanne y su hijo Ludwig sobrevivieron. Al año siguiente, se casó en Linz con Susanne Reuttinger, con la que tuvo siete niños, de los que tres fallecerán muy temprano. En 1615, su madre, entonces a la edad de 68 años, fue acusada de brujería. Kepler, persuadido de su inocencia, pasó seis años trabajando en su defensa ante los tribunales y escribiendo numerosos alegatos. Debió regresar dos veces a Wurtemberg. Ella pasó un año encerrada en la torre de Güglingen, a expensas de Kepler, y escapó por poco de la tortura.

Finalmente, fue liberada el 28 de septiembre de 1621 pero, debilitada por los duros años de proceso y de encarcelamiento, murió seis meses más tarde. En 1628 Kepler pasó al servicio de Albrecht von Wallenstein, en Silesia, quien le prometió, en vano, resarcirle de la deuda contraída con él por la Corona a lo largo de los años. Un mes antes de morir, víctima de la fiebre, Kepler abandonó Silesia en busca de un nuevo empleo. Kepler murió en 1630 en Ratisbona, en Baviera, Alemania, a la edad de 58 años. En 1632, durante la guerra de los Treinta Años, el ejército sueco destruyó su tumba y se perdieron sus trabajos hasta el año 1773. Recuperados por Catalina II de Rusia, se encuentran actualmente en el Observatorio de Pulkovo en San Petersburgo, Rusia.


ANOTACIONES
Puede pasar el ratón sobre la imagen ó hacer click en pantallas táctiles para identificar los objetos destacados en el campo de visión.
La leyenda indica los colores asignados a cada tipo de objeto. Algunas imágenes que muestran un sólo objeto no necesitan anotaciones.
           Estrella / Sistema estelar binario ó múltiple
           Cúmulo estelar / Asociación estelar / Asterismo
           Nebulosa / Nube / Remanente de supernova
           Galaxia / Cúmulo de galaxias
           Fuente de emisión / Rayos X / Gamma / Radio / Infrarrojo / Ultravioleta
           Sistema Solar
           Exótico / Supernova / Púlsar / Magnetar / Agujero negro / Estrella de neutrones / Cuásar / Materia oscura / Herbig-Haro / Máser                                        
           Objeto catalogado como desconocido o sin clasificar
Cada imagen en Universo Mágico tiene derechos de autor, para utilizar estas imágenes en otros sitios debe pedir permiso al autor de la imagen.
Los datos de posición y magnitud cambian con el tiempo, consulte los datos actualizados haciendo click en el enlace a Simbad en las tablas de datos.
Universo Mágico hace uso de las bases de datos
In The Sky - The Sky Live - Cseligman para los catálogos.
Universo Mágico hace uso de las bases de datos The Sky Live - Aerith - NED - SIMBAD operado desde CDS, Estrasburgo, Francia, para los artículos.
Universo Mágico es un sitio web sin publicidad, de contenido astronómico y educativo sin ánimo de lucro.
Copyright About Cookies Privacy Policy Contact