Una visión diferente para disfrutar de la magia del Universo
Astronomía - Cosmología - Astrofotografía - Astrofísica - Exploración Espacial

Si eres astrónomo puedes solicitar colaborar aportando tus imágenes a Universo Mágico, utiliza nuestro Formulario de Contacto.





✨Cómo evolucionó el Universo y hacia dónde se dirige


Lunes 13 de Noviembre de 2017





Los cúmulos de galaxias son enormes colecciones de cientos o incluso miles de galaxias y vastas reservas de gas caliente incrustadas en nubes masivas de materia oscura, material invisible que no emite ni absorbe la luz, pero puede detectarse a través de sus efectos gravitacionales. Estos gigantes cósmicos no son simplemente gigantes circunferencias, sino que representan vías para comprender cómo evolucionó todo nuestro universo en el pasado y hacia dónde se dirige en el futuro. Para aprender más sobre los cúmulos de galaxias, incluida la forma en que crecen a través de colisiones, los astrónomos han utilizado algunos de los telescopios más potentes del mundo usando diferentes espectros de luz. Han enfocado largas observaciones con estos telescopios en media docena de cúmulos de galaxias. El nombre del proyecto de la invesigación de los cúmulos de galaxias es Frontier Fields. Dos de estos cúmulos galácticos de Frontier Fields, MACS J0416.1-2403 en el panel derecho de la imagen inferiror, y MACS J0717.5 + 3745 en el panel izquierdo, se presentan aquí en dos imágenes de múltiples longitudes de onda.

Ubicado a unos 4.300 millones de años luz de la Tierra, MACS J0416 son en realidad dos cúmulos de galaxias que colisionan y que eventualmente se combinarán para formar un cúmulo aún mayor. MACS J0717 es uno de los cúmulos de galaxias más complejos y distorsionados conocidos, y es el sitio de una colisión entre cuatro grupos. Se encuentra a unos 5,4 mil millones de años luz de distancia. Estas nuevas imágenes de MACS J0416 y MACS J0717 contienen datos de tres telescopios diferentes: el Observatorio de rayos X Chandra emisión difusa en azul, el Telescopio Espacial Hubble rojo, verde y azul y el Karl G. Jansky de la National Science Foundation Very Large Array emisión difusa en rosa. Donde la radiografía y la emisión de radio se superponen, la imagen aparece morada. Los astrónomos también utilizaron datos del gigante telescopio de radio Metrewave, situado en La India para estudiar las propiedades de MACS J0416.





Los datos de Chandra muestran gas en los clústeres fusionados con temperaturas de millones de grados. Los datos del Hubble muestran galaxias en los cúmulos y otras galaxias más distantes que se encuentran detrás de los cúmulos. Algunas de estas galaxias de fondo están altamente distorsionadas debido al efecto llamado lente gravitacional, la flexión de la luz por objetos masivos. Este efecto también puede magnificar la luz de estos objetos, lo que permite a los astrónomos estudiar galaxias de fondo que de otro modo serían demasiado débiles para ser detectadas. Finalmente, las estructuras en los datos de radio trazan enormes ondas de choque y turbulencias. Los impactos son similares a los auges sónicos, generados por las fusiones de los cúmulos. Una pregunta abierta para los astrónomos sobre MACS J0416 ha sido: ¿Estamos viendo una colisión en estos cúmulos que está a punto de suceder o una que ya ha tenido lugar? Hasta hace poco, los científicos no han podido distinguir entre estas dos explicaciones. Ahora, los datos combinados de estos diversos telescopios brindan nuevas respuestas.

En MACS J0416, la materia oscura, que deja su huella gravitacional en los datos ópticos, y el gas caliente detectado por Chandra, se alinean bien entre sí. Esto sugiere que los cúmulos se han capturado antes de colisionar. Si se observaban los cúmulos después de colisionar con la materia oscura y el gas caliente se separaban unos de otros, como se vio en el famoso sistema de cúmulos en colisión conocido como Bullet Cluster. El grupo en la esquina superior izquierda de la imagen de abajo, contiene un núcleo compacto de gas caliente, más fácil de ver en una imagen especialmente procesada, y también muestra evidencia de una cavidad cercana, o un agujero en el gas que emite rayos X. La presencia de estas estructuras también sugiere que no ha ocurrido ninguna colisión importante recientemente, de lo contrario, estas características probablemente se habrían interrumpido. Finalmente, la falta de estructuras nítidas en la imagen de la radio proporciona más evidencia de que aún no se ha producido una colisión.





Con el Jansky Very Large Array, se observan siete fuentes de lentes gravitacionales, todas son fuentes puntuales o fuentes que apenas superan los puntos. Esto convierte a MACS J0717 en el cúmulo con el mayor número de fuentes de radio con lente conocidas. Dos de estas fuentes con lente también se detectan en la imagen de Chandra. Los autores sólo conocen otras dos fuentes de rayos X con lentes detrás de un cúmulo de galaxias. Todas las fuentes de radio con lente son galaxias ubicadas entre 7,8 mil millones y 10,4 mil millones años luz de distancia. El brillo de las galaxias en las longitudes de onda de radio muestra que contienen estrellas que se forman a altas velocidades. Sin la amplificación por lentes, algunas de estas fuentes de radio serían demasiado débiles para detectar con observaciones de radio típicas. Las dos fuentes de rayos X detectadas en las imágenes de Chandra son probablemente núcleos galácticos activos AGN en el centro de las galaxias.

Los AGN son fuentes compactas y luminosas alimentadas por gas calentado a millones de grados a medida que cae hacia agujeros negros supermasivos. Estas dos fuentes de rayos X se habrían detectado sin lentes, pero habrían sido dos o tres veces más débiles. Los grandes arcos de emisión de radio en MACS J0717 son muy diferentes de aquellos en MACS J0416 debido a las ondas de choque que surgen de las colisiones múltiples que ocurren en el primer objeto. La emisión de rayos X en MACS J0717 tiene más grumos porque hay cuatro cúmulos colisionando violentamente. La investigación sobre MACS J0717 fue dirigida por Reinout van Weeren del Centro Harvard-Smithsonian para Astrofísica y fue publicada en el número del 1 de febrero de 2016 de The Astrophysical Journal, que está disponible en línea.



Crédito:   NASA / ESA / CXC / NRAO / AUI / NSF / STScI / R. van Weeren

Nombre RA DEC Datos
ClG J0717+3745 07:17:36.50 +37º 45' 23.0'' Simbad
MCS J0416.1-2403 04:16:08.380 -24º 04' 20.80'' Simbad

 Chat 
 

ANOTACIONES
Puede pasar el ratón sobre la imagen ó hacer click en pantallas táctiles para identificar los objetos destacados en el campo de visión.
La leyenda indica los colores asignados a cada tipo de objeto. Algunas imágenes que muestran un sólo objeto no necesitan anotaciones.
           Estrella / Sistema estelar binario ó múltiple
           Cúmulo estelar / Asociación estelar / Asterismo
           Nebulosa / Nube / Remanente de supernova
           Galaxia / Cúmulo de galaxias
           Fuente de emisión / Rayos X / Gamma / Radio / Infrarrojo / Ultravioleta
           Sistema Solar
           Exótico / Supernova / Púlsar / Magnetar / Agujero negro / Estrella de neutrones / Cuásar / Materia oscura / Herbig-Haro / Máser                                        
           Objeto catalogado como desconocido o sin clasificar
Cada imagen en Universo Mágico tiene derechos de autor, para utilizar estas imágenes en otros sitios debe pedir permiso al autor de la imagen.
Los datos de posición y magnitud cambian con el tiempo, consulte los datos actualizados haciendo click en el enlace a Simbad en las tablas de datos.
Universo Mágico hace uso de las bases de datos
In The Sky - The Sky Live - Cseligman para los catálogos.
Universo Mágico hace uso de las bases de datos The Sky Live - Aerith - NED - SIMBAD operado desde CDS, Estrasburgo, Francia, para los artículos.
Universo Mágico es un sitio web sin publicidad, de contenido astronómico y educativo sin ánimo de lucro.
Copyright About Cookies Privacy Policy Contact